Numerical Integration of Harmonic Functions with Restricted Sampling Data
نویسندگان
چکیده
منابع مشابه
Numerical indefinite integration of functions with singularities
We derive an indefinite quadrature formula, based on a theorem of Ganelius, for Hp functions, for p > 1, over the interval (−1, 1). The main factor in the error of our indefinite quadrature formula is O(e−π √ ), with 2N nodes and 1 p + 1 q = 1. The convergence rate of our formula is better than that of the Stenger-type formulas by a factor of √ 2 in the constant of the exponential. We conjectur...
متن کاملHarmonic functions via restricted mean-value theorems
Let f be a function on a bounded domain Ω ⊆ R and δ be a positive function on Ω such that B(x, δ(x)) ⊆ Ω. Let σ(f)(x) be the average of f over the ball B(x, δ(x)). The restricted mean-value theorems discuss the conditions on f, δ, and Ω under which σ(f) = f implies that f is harmonic. In this paper, we study the stability of harmonic functions with respect to the map σ. One expects that, in gen...
متن کاملA Remark on Disk Packings and Numerical Integration of Harmonic Functions
X iv :1 40 3. 80 02 v1 [ m at h. N A ] 3 1 M ar 2 01 4 A REMARK ON DISK PACKINGS AND NUMERICAL INTEGRATION OF HARMONIC FUNCTIONS STEFAN STEINERBERGER Abstract. We are interested in the following problem: given an open, bounded domain Ω ⊂ R2, what is the largest constant α = α(Ω) > 0 such that there exist an infinite sequence of disks B1, B2, . . . , BN , · · · ⊂ R 2 and a sequence (ni) with ni ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Complexity
سال: 2001
ISSN: 0885-064X
DOI: 10.1006/jcom.2001.0617